扩展KMP算法
问题定义:给定两个字符串 S 和 T(长度分别为 n 和 m),下标从 0 开始,定义extend[i]
等于S[i]...S[n-1]
与 T 的最长相同前缀的长度,求出所有的extend[i]
。举个例子,看下表:
i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
S | a | a | a | a | a | b | b | b |
T | a | a | a | a | a | c | ||
extend[i] | 5 | 4 | 3 | 2 | 1 | 0 | 0 | 0 |
为什么说这是 KMP 算法的扩展呢?显然,如果在 S 的某个位置 i 有extend[i]
等于 m,则可知在 S 中找到了匹配串 T,并且匹配的首位置是 i。而且,扩展 KMP 算法可以找到 S 中所有 T 的匹配。接下来具体介绍下这个算法。
定义母串S,和字串T,设S的长度为n,T的长度为m,求T与S的每一个后缀的最长公共前缀,也就是说,设extend数组,extend[i]表示T与S[i,n-1]的最长公共前缀,要求出所有extendi。
注意到,如果有一个位置extend[i]=m,则表示T在S中出现,而且是在位置i出现,这就是标准的KMP问题,所以说拓展kmp是对KMP算法的扩展,所以一般将它称为扩展KMP算法。
再定义一个辅助数组int next[]
,其中next[i]
含义为:T[i]...T[m - 1]
与 T 的最长相同前缀长度,m 为串 T 的长度。举个例子:
i | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
T | a | a | a | a | a | c |
next[i] | 6 | 4 | 3 | 2 | 1 | 0 |
代码:
#include <iostream>
#include <string>
using namespace std;
/* 求解 T 中 next[],注释参考 GetExtend() */
void GetNext(string & T, int & m, int next[])
{
int a = 0, p = 0;
next[0] = m;
for (int i = 1; i < m; i++)
{
if (i >= p || i + next[i - a] >= p)
{
if (i >= p)
p = i;
while (p < m && T[p] == T[p - i])
p++;
next[i] = p - i;
a = i;
}
else
next[i] = next[i - a];
}
}
/* 求解 extend[] */
void GetExtend(string & S, int & n, string & T, int & m, int extend[], int next[])
{
int a = 0, p = 0;
GetNext(T, m, next);
for (int i = 0; i < n; i++)
{
if (i >= p || i + next[i - a] >= p) // i >= p 的作用:举个典型例子,S 和 T 无一字符相同
{
if (i >= p)
p = i;
while (p < n && p - i < m && S[p] == T[p - i])
p++;
extend[i] = p - i;
a = i;
}
else
extend[i] = next[i - a];
}
}
int main()
{
int next[100];
int extend[100];
string S, T;
int n, m;
while (cin >> S >> T)
{
n = S.size();
m = T.size();
GetExtend(S, n, T, m, extend, next);
// 打印 next
cout << "next: ";
for (int i = 0; i < m; i++)
cout << next[i] << " ";
// 打印 extend
cout << "\nextend: ";
for (int i = 0; i < n; i++)
cout << extend[i] << " ";
cout << endl << endl;
}
return 0;
}